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Faraz Faghri 1,4,5✉ and Mike A. Nalls1,4,5✉

Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and
available multimodal data is key moving forward. We build upon previous work to deliver multimodal predictions of Parkinson’s
disease (PD) risk and systematically develop a model using GenoML, an automated ML package, to make improved multi-omic
predictions of PD, validated in an external cohort. We investigated top features, constructed hypothesis-free disease-relevant
networks, and investigated drug–gene interactions. We performed automated ML on multimodal data from the Parkinson’s
progression marker initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected
model. The model was validated in the Parkinson’s Disease Biomarker Program (PDBP) dataset. Our initial model showed an area
under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP,
AUC 85.03%). Optimizing thresholds for classication increased the diagnosis prediction accuracy and other metrics. Finally,
networks were built to identify gene communities specic to PD. Combining data modalities outperforms the single biomarker
paradigm. UPSIT and PRS contributed most to the predictive power of the model, but the accuracy of these are supplemented by
many smaller effect transcripts and risk SNPs. Our model is best suited to identifying large groups of individuals to monitor within a
health registry or biobank to prioritize for further testing. This approach allows complex predictive models to be reproducible and
accessible to the community, with the package, code, and results publicly available.
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INTRODUCTION
For progressive neurodegenerative diseases, early and accurate
diagnosis is key to effectively developing and using new
interventions. This early detection paradigm aims to identify,
analyze, and prevent or manage the disease before the patient
recognizes signs and symptoms while the disease process is most
amenable to intervention.

Here we describe work that facilitates accurate and early
diagnosis using cost-effective methods in a data-driven manner1.
This report also describes the application of an open-source auto-
ML, GenoML, in the context of facilitating production scale
analyses of multimodal genomics and clinical data in a
democratized manner.

The most recent strategic vision published by the National
Human Genome Research Institute stated that the features of
epigenetics and transcriptomics will be incorporated into pre-
dictive models of the effect of genotype on phenotype routinely
by the year 20302. Biomedical researchers are currently at the

convergence of two scientic advances that will allow progress in
early detection and remote identication of potentially high-risk
individuals: rst, the availability of substantial clinical, demo-
graphic, and genetic/genomic datasets, second, advances in the
automation of machine learning (ML) pipelines and articial
intelligence, to maximize the value of this massive amount of
readily available data3.

A correct clinical diagnosis at the rst visit is estimated to be
accurate in only 80% of pathologically-conrmed Parkinson’s
disease (PD)4. Previous biomarker studies, particularly in neuro-
degenerative diseases, have focused on widely known statistical
approaches and linear models, using a single metric or handful of
metrics for predictions5. Over the last few years, multiple studies
have investigated a number of different modalities using ML, such
as CSF biomarkers6, imaging7,8, RNA9,10, or include movement-
related metrics11, even wearable sensor data12. While many of
these efforts perform well at classication, we sought to build
models based on relatively low cost and easily accessible data
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modalities that can be generated remotely or using existing
biobank data and do not require additional clinic visits or
expensive protocols. Our goal for developing a better predictive
model for early detection is to identify, analyze, and prevent or
manage the disease before the patient recognizes signs and
symptoms while the disease process is likely most amenable to
intervention in a cost-effective manner13. We aim to contribute to
the eld with nonlinear and ML-based approaches and leverage
rapidly growing publicly available data to build these models. We
also extend these models, providing not just disease prediction
but also biological insight.

We have used publicly available multimodal PD data and
GenoML, an automated ML open-source Python package14 that
automatically compares the consistent top dozen ML algorithms
from the 2020 executive summary Kaggle has put together
derived from the performance across data challenges (https://
www.kaggle.com/kaggle-survey-2020) [last accessed 11 August
2021]. We surveyed the list of algorithms used in the executive
summary and triaged algorithms that are fundamentally similar to
get the best cross-section of machine learning methods for
supervised prediction in biomedical research after a qualitative
review by an expert panel. Twelve top-performing algorithms
were chosen to reduce runtimes and compute the overhead
needed for analysis. These were compared to one another to build
an accurate peri-diagnostic model to predict disease risk. We also
used the features nominated by our workow to build unbiased
networks of genes related to the onset of PD that highlight
biological pathways of interest and therapeutic targets. This work
leveraged clinico-demographic and multi-omic data produced and
curated to build and validate models in publicly available datasets
that may impact both trial recruitment and drug development.
The models we have developed here improved performance over
previous related efforts, with performance metrics at current
cross-validation in withheld samples being equivalent, or in some
cases, better than the training phase of earlier work1. The data
came from the Accelerating Medicines Program—Parkinson’s
Disease (AMP PD) program [https://amp-pd.org/] and the code
used to carry out analyses comes from open-source automated
ML software, all of which have been made publicly available to
support reproducibility, transparency, and open science15,16.

RESULTS
Combining multiple modalities outperforms predictions
based on a single modality
We have shown that integrating multiple modalities improved
model performance in predicting PD diagnosis in a mixed
population of cases and controls. For a summary of basic clinical
and demographic features, please refer to Table 1 and for a
summary of the analysis, please refer to Fig. 1. Additional
information in regards to cohorts and interpretation for ML
metrics and models are included in Supplementary Notes 2, 3. Our
multi-modality model showed a higher area under the curve (AUC;
89.72%) than just the clinico-demographic data available prior to
neurological assessment (87.52%), the genetics-only model from

genome sequencing data and polygenic risk score (PRS; 70.66%),
or the transcriptomics-only model from genome-wide whole
blood RNA sequencing data (79.73%) in withheld PPMI samples
(see Table 2 and Fig. 2 for summaries). This model’s performance
improved after tuning, described below and in Table 3, where the
mean AUC metric in the untuned model in PPMI is 80.75 with a
standard deviation of 8.84 (range= 69.44–88.51) and the mean
AUC at tuning in PPMI is 82.17 with a standard deviation of 8.96
(range= 70.93–90.17). Similar improvements can be seen when
this model is validated in the PDBP dataset (AUC from the
combined modality model at 83.84% before tuning) detailed in
Table 4 and Fig. 3. Additionally, the multimodal model also had
the lowest false positive and false negative rates compared to
other models, only focusing on a single modality, in both the
withheld test set in PPMI and in the PDBP validation set. Thus,
moving from single to multiple data modalities yielded better
results in not only AUC but across all performance metrics.

Integrative tuned multimodal model compared to previous
efforts
In previous work done by Nalls and colleagues, the UPSIT-only
model in the same training set as this study (PPMI) was a strong
classier (AUC 90.1%), but their integrative model was more
informative based on DeLong’s test1. A model based on only
UPSIT might have a high AUC, but with limitations. A decline in
smell identication is not PD-specic, but can also be used as a
general marker of neurodegeneration and/or the effects of aging
and environmental factors. A strength of using multimodal
approaches is that some modalities may better predict case or
control status than others (Table 2). Here, we leveraged datatype
diversity to increase overall sensitivity and specicity. Our nal
multimodal model in withheld PPMI data had higher accuracy and
balanced accuracy at 85.56 and 82.41%, respectively, sensitivity at
89.31%, and specicity at 75.51% when compared to models built
only on a single data modality. We also compared the
distributions of AUCs across all iterations of cross-validation via
T-test and found that the combined model out performed the
clinico-demographic model consistently in PPMI (statistic= |
10.23 | ; p value = 9.95e–23). Notably, this improved balanced
accuracy is of particular importance in binary classiers where one
of the predicted classes is much rarer than the other, like PD,
which is relatively infrequent in the general population. Special
attention was given to validate the model, interpreting and
visualizing the top features aiding in the prediction of classica-
tion, and further investigation into optimizing the model,
developing hypothesis-free transcriptomic communities, and
exploring potential drug–gene interactions.

Benets of using machine learning to construct multimodal
prediction model
One benet of the ML approach we have used is its ability to tune
model parameters and accommodate nonlinear associations
compared to more commonly used regression-based approaches
to disease prediction. The best performing tuned model

Table 1. Descriptive statistics of studies included from AMP PD.

Study Status Age at baseline mean (SD) UPSIT score (mean, SD) Male (%) Positive family history of PD (%) Inferred Ashkenazi ancestry (%)

PPMI Case 61.75 (9.69) 23.48 (8.35) 65.57 25.53 6.09

Control 60.61 (10.43) 34.18 (4.71) 63.74 5.85 11.11

PDBP Case 64.59 (8.99) 19.65 (8.01) 64.18 24.88 3.61

Control 62.87 (10.96) 32.52 (5.98) 45.25 8.14 4.07

AMP-PD accelerating medicines partnership in Parkinson’s disease, PPMI Parkinson’s progression marker initiative, PDBP Parkinson’s disease biomarker program,
PD Parkinson’s disease, SD standard deviation, UPSIT University of Pennsylvania smell identication test.
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leveraging the strength of the AdaBoostclassier that included all
data showed an AUC distribution of 88.06 to 92.70% at vefold
cross-validation with a mean of 90.20% and a standard deviation
of 2.3% in PPMI (see Table 3). When validated in the PDBP data, we
saw an AUC of 85.03%, sensitivity at 93.12%, and specicity at
43.07% for the tuned multimodal model. These models then
improved further when post hoc optimization of case probability
thresholds was carried out. We considered the optimized version
of the tuned model (including all data modalities) as our gold
standard. Rather than upsampling or downsampling either cohort,
we chose to use Youden’s J to better account for sample
imbalance of case to control ratios. Using Youden’s J to identify
the optimized threshold, the threshold for cases and controls
changed from the default 50% to the optimized threshold of 51%.
This change in thresholds to better account for the sample
imbalance leads to the sizable increase in the specicity for the
PDBP cohort during validation. When applied to withheld PPMI
samples, the training phase model increased its balanced accuracy
quantied performance to 83.95%. This optimization also led to
improved balanced accuracy of 77.97% when tting the tuned
model referenced above to the PDBP validation data. See Table 5
for details on other related metrics and a summary of optimized
versus default thresholds. In general, our threshold optimization
allowed general increases in classier performance at a minimal
computational cost.

Smell identication test and polygenic risk scores contribute
most to predictive performance
Our model build included 51 SNPs and 418 protein-coding
transcripts in addition to expected features like the demographics,
age, family history, olfactory function, and previous genome-wide
signicant polygenic risk estimates in the form of PRS17. The
Shapley Additive exPlanation (SHAP) plots in Fig. 4 show the
relative importance of the features in the model approximated
using withheld training data. When investigating the SHAP values
for both the training and testing samples, the University of
Pennsylvania Smell Identication Test (UPSIT) score, as well as PRS,
contributed most to the predictive power of the model, but the
accuracy of these are supplemented by many smaller effect
transcripts and risk SNPs. It also indicates that the lower UPSIT
score (designated by the blue color on the left-hand side) value
corresponds to a higher probability of PD, as most of the blue-
colored points lie on the right side of the baseline risk estimate,
replicating results from previous studies using the smell identica-
tion test to aid in the diagnosis of PD18–20. Looking closer at these
features, we can also observe that the directionality of different
genetic features is not uniform. This signies that overexpression
of some genes corresponds to healthy controls while for some
features it is in the opposite direction. While sex was included in
the features of the dataset, coded as “MALE”, there was a balanced
distribution of sex between cases and controls in our training
dataset, PPMI, at baseline. This balance might explain why sex was

Fig. 1 Workow and Data Summary. Scientic notation in the workow diagram denotes minimum p values from reference GWAS or
differential expression studies as a pre-screen for feature inclusion. Blue indicates subsets of genetics data (also denoted as “G”), green
indicates subsets of transcriptomics data (also denoted as *omics or “O”), yellow indicates clinico-demographic data (also denoted as C+D),
and purple indicates combined data modalities. PD Parkinson’s disease, AMP-PD accelerating medicines partnership in Parkinson’s disease,
PPMI Parkinson’s progression marker initiative, PDBP Parkinson’s disease biomarker program, WGS whole-genome sequencing, GWAS
genome-wide association study, QC quality control, MAF minor allele frequency, PRS polygenic risk score.
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excluded at feature selection during data munging and ultimately
did not contribute to the nal predictive accuracy of the model
with a calculated Shapley value of zero. We have also created a
website that allows readers to further explore feature contribu-
tions to model accuracy in various scenarios [https://share.
streamlit.io/anant-dadu/shapleypdpredictiongenetics/main]. The
nal SHAP values for all the predictive features in the top-
performing model can be found in Supplementary Table 5. The
addition of SNPs outside the PRS could suggest potential
compensatory or risk modication effects interacting with the
PRS. For more information on pairwise interactions between the
PRS and individual SNPs, please see Supplementary Fig. 4. QTL
analysis was performed on each SNP and transcript combination
in the top features included in the nal top predictive model on
the adjusted dataset using linear regression. No SNP and transcript
combination passed multiple test corrections showing the utility
of our feature selection efforts at data munging to remove
redundant or correlated features. We conducted further analyses
to assess if each of the features nominated were independent of
one another. The |correlations| of the top 5% of the potentially
predictive features had a minimum correlation of 1.40e–05 and a
maximum of 0.364 (mean: 0.045; std: 0.049), indicating that the
features of the top-performing model are independent of one
another. Please see the Supplementary Data Fig. 4 for full results
of this analysis and details on features selected.

Gene expression network communities and drug enrichment
analysis
Gene expression network communities were constructed using
RNA sequencing data extracted from positive PD cases. These
genes were nominated by the feature selection process. These
communities of genes represent PD-specic networks derived
from whole blood RNA sequencing. Consider the network itself to
be conceptually similar to a pathway, composed of genes whose
expression was strongly correlated in the case-only transcrip-
tomics dataset, and the communities being subgroups of closely
related genes within the larger set. We identied 13 network
communities consisting of 300 genes with an Erdos-Renyi
modularity score of 0.794 (a modularity score closer to 1 indicates
better model t). A link to the methods, full community
annotations, and a graphical summary can be found in
Supplementary Fig. 2.

For genes in our network communities, we evaluated the
potential overrepresentation of known drug target genes across
the identied communities. When comparing the genes dened
as part of the network communities (N= 300) to those selected for
inclusion as features in the case:control model build (N= 598), we
noted enrichments of genes connected to fostamatinib (FDR
adjusted p value 2.21e-4, for genes MYLK, EPHA8, HCK, DYRK1B,

and BUB1B-PAK6) and copper (FDR adjusted p value 0.0286, for
genes HSP90AA, CBX5, and HSPD1) from the DrugBank annota-
tions. The same query in the GLAD4U database resulted in a
signicant overrepresentation of L-lysine annotated genes (FDR
adjusted p value 0.0057, for genes DDX50, UBA2, ESCO1, CDC34,
ANKIB1, PCMT1, DNAJA1, PRMT3, ASPSCR1, BRDT, LOXL4, CBX5,
HAT1, MARCH1, HSP90AA1, KPNB1, KMT5B, PSIP1, XPOT, SLC7A9,
ZNF131, DDX18, RBBP5, and MSL1). All other variations of our drug
target enrichment analyses yielded no signicant drugs over-
represented after multiple test correction, although the top-
ranked result was consistently gamma-hydroxybutyric acid
(unadjusted p values 0.0056–0.0001 for genes SLC16A7, SLC16A3,
and GABBR1).

DISCUSSION
In an era where genomics combined with clinico-demographic
data are increasingly available to researchers, we can now build
multimodal models at a scale that uses multiple data modalities
for increased performance.

While other studies that look at PD risk and onset use data types
such as analyzing gait12, fall detection methods21, other motor
data11, or sleep behaviors22, our study works to incorporate
adjusted transcriptomics, genetics, and clinical data in one
predictive model using ML as a framework. We believe this work,
focusing on integrating clinico-demographic, genetic, and tran-
scriptomic information in an ML framework complements the
scopes of other studies that focus on other modalities such as
imaging within an ML framework to predict for REM sleep
behavior disorder7,8 or cognitive decits23 at a lower resource
burden to implement the model. The potential to combine our
model with those from previous studies in a transfer or ensemble
learning framework could prove valuable in the future. Addition-
ally, we were limited by data sparsity and the availability of
potential features across both datasets in the public domain.
Previous work has identied UPSIT as a top predictive feature,
such as the study done by Prashanth and colleagues training a
predictive model on CSF biomarkers6. Expanding on this work, a
key goal of this study was to ensure that this model could be built
on data that is remotely attainable or is common in biobank
samples without a clinical visit to a specialist that are often
expensive, exclusionary, and might be logistically difcult. Mei and
colleagues published a comprehensive review looking at studies
that also used ML for the diagnosis of PD24. One key difference of
this study compared to those assessed in the review is by focusing
on these modalities and by training, tuning, and validating in
publicly available cohorts to ensure transparency, reproducibility,
and transfer learning applications. This study illustrates that
integrating diverse data modalities into modeling efforts can

Table 2. Performance metric summaries comparing training in withheld samples in PPMI.

Data Modality Genetics (P < 1E-5) Clinico-demographic Transcriptomics (P < 1E-2) Combined

Stage Training in PPMI (70:30) Training in PPMI (70:30) Training in PPMI (70:30) Training in PPMI (70:30)

Algorithm MLPClassier LogisticRegression SVC AdaBoostClassier

AUC (%) 70.66 87.52 79.73 89.72

Accuracy (%) 70.00 79.44 73.89 85.56

Balanced accuracy (%) 60.64 75.27 54.60 82.41

Log Loss 0.83 0.39 0.48 0.63

Sensitivity 0.83 0.85 0.97 0.89

Specicity 0.38 0.65 0.12 0.76

PPV 0.77 0.86 0.75 0.91

NPV 0.48 0.64 0.60 0.73
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improve the quality of predictions. This paper is evidence of utility
in the area of predictive modeling in large healthcare data and
indicative of its relevance to other areas such as clinical trial
enrollment and stratication. Here we describe work that

facilitates accurate and early diagnosis in a data-driven manner
that is potentially cost-effective for biobanks and well-
characterized healthcare systems. In our modeling process, we
have succeeded in building robust model(s) of peri-diagnostic PD

Fig. 2 Receiver operating characteristic curves and case probability density plots in withheld training samples at default thresholds
comparing performance metrics in different data modalities from the PPMI dataset. P values mentioned indicate the threshold of
signicance used per datatype, except for the inclusion of all clinico-demographic features. a PPMI combined *omics dataset (genetics p value
threshold= 1E-5, transcriptomics p value threshold= 1E-2, and clinico-demographic information); b PPMI genetics-only dataset (p value
threshold= 1E-5); c PPMI clinico-demographics only dataset; d PPMI transcriptomics-only dataset (p value threshold= 1E-2). Note that x-axis
limits may vary as some models produce less extreme probability distributions than others inherently based on t to the input data and the
algorithm used, further detailed images are included in Supplementary Fig. 5. PPMI Parkinson’s progression marker initiative, ROC receiver
operating characteristic curve.

Table 3. Performance metric summaries comparing at tuned cross-validation in withheld samples in PPMI.

Data Modality Genetics (P < 1E-5) Clinico-demographic Transcriptomics (P < 1E-2) Combined

Stage Tuning in PPMI Tuning in PPMI Tuning in PPMI Tuning in PPMI

Algorithm MLPClassier LogisticRegression SVC AdaBoostClassier

AUC at training (%) 70.66 87.52 79.73 89.72

Mean, AUC during CV for baseline model (%) 69.44 88.51 78.05 86.99

Standard deviation, AUC during CV for baseline model (%) 4.46 2.17 4.27 2.30

Min, AUC during CV for baseline model (%) 62.45 86.19 71.49 84.27

Max, AUC during CV for baseline model (%) 75.73 91.98 82.62 90.70

Mean, AUC during CV for tuned model (%) 70.93 88.55 79.01 90.17

Standard deviation, AUC during CV for tuned model (%) 5.39 2.20 4.71 1.64

Min, AUC during CV for tuned model (%) 61.29 86.33 70.88 88.06

Max, AUC during CV for tuned model (%) 76.71 92.15 84.01 92.73

Variance, AUC during CV for baseline model (%) 19.89 4.73 18.20 5.29

Variance, AUC during CV for tuned model (%) 29.03 4.82 22.18 2.70

M.B. Makarious et al.
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while also generating de novo network communities of genes
correlated in PD cases, providing further data for potential
therapeutic development. A strength of using this multimodal
approach is that the different modalities compensate for one
another, with some modalities better at predicting case status
while others are better at classifying controls. All of this was
accomplished in a completely transparent and open science
framework, from the underlying data to code and resulting
models.

While we do not suggest this as a replacement for current
diagnostic screening methods, it can be a potential adjunct
screening that could aid in identifying high-risk individuals,
especially on a large biobank or study recruitment scale.
Additional studies will need to be conducted to ascertain the
model’s ability to distinguish very early PD cases from other
diseases within high-risk cohort studies. The estimated prevalence
of PD in an aging population is about 2%25. At this prevalence for
our optimized PPMI model described in Table 5, the positive
predictive value (PPV) and negative predictive values (NPV) were
calculated to be 8.75 and 99.66%, respectively. The false discovery
rate (FDR) and false omission rates (FOR) at this prevalence are
91.26 and 0.34%, respectively. The low FOR indicates that for every
1000 individuals who are classied as healthy controls, there are
likely three to four missed positive PD cases. Using this optimized
combined model and accounting for the estimated prevalence of
PD, about ten times the number of individuals would be agged
as high risk or a potential PD case for every real case, indicating
that this model is best suited to identifying large groups of
individuals to monitor within a health registry or biobank to
prioritize for further testing. While we acknowledge the specicity
is lower across the metrics reported, the model can still be
leveraged otherwise for large-scale biobanks and trial recruitment
efforts as the sensitivity is much stronger, making the model
suitable for locating at-risk individuals. This model, alongside its
specicity and sensitivity, is also impacted by the real-world
prevalence difference between our case-control datasets com-
pared to study-based prevalence.

The strength of our work is its high balanced accuracy in
delineating cases and controls. While PDBP might more realisti-
cally model the distribution of males:females who are diagnosed
with PD, PPMI realistically models most of the patients in what we
believe are of greater interest (temporally close to diagnosis and
pre-treatment). PPMI and PDBP also have distinct differences in
their recruitment styles, where PPMI is unmedicated within one
year of diagnosis (conrmed by DatScan), while PDBP recruits
those within 5 years of receiving a diagnosis regardless of
medication status (and without DatScan conrmation). This key
difference is reected in both the mean age and mean UPSIT score
reported in Table 1 between the two cohorts, and may lead to
attenuation of model performance in PDBP, such as

transcriptomics-only and genetics-only models somewhat under-
performing (Supplementary Table 4). Of note, the clinico-
demographic only model, of which UPSIT is the top predictor,
performs well in PDBP. The combined multimodal approach is
more appropriate in identifying high-risk individuals at the point
of diagnosis as it was trained on PPMI samples that are earlier on
in their disease course based on data from withheld samples and
at cross-validation in PPMI. Additionally, chromosomes X and Y
were not available in the AMP PD version 1 release, and recent
work published indicates that autosomal risk factors have no
known correlation or association with the sex differences we see
in PD26. Its other strength is its applicability and utility across
datasets, detailed information on transfer learning highlighted in
Supplementary Note 1. This model has the potential to be used in
large healthcare system settings to identify at-risk individuals for
potential monitoring as well as nominate future candidates for
various low-cost preventative interventions (lifestyle) or prodromal
clinical trial enrollments. Our diagnostic model includes both time-
varying (age, UPSIT, and RNA sequencing data) and time static
(family history and genetics) features that likely peak accuracy at
the time of diagnosis due to model training on the PPMI dataset,
which includes only newly diagnosed imaging-conrmed and
unmedicated cases. Additionally, the ability to rene the
phenotype of the participant group based on a combination of
clinician and algorithmic insight will benet trial recruitment and
could only increase the efcacy of a trial. Finally, since our model is
diagnostic in nature and designed to target PD early in the disease
course, it may be benecial in helping get treatments or
interventions to patients before irreparable damage has been
done as large pools of at-risk individuals can be agged for follow-
up and closer monitoring for potential symptom onset27.

We have created an interactive web-based application for
others to investigate the driving factors in our best model that
incorporates all data modalities; it also gives users the exibility to
explore variations like transcriptomics-only models or a new
model with none of the clinico-demographic features present (see
Supplementary Table 1). For the combined model that we have
focused on describing in this report; decision plots are provided,
these are useful as the web application is capable of letting users
explore how and why individuals that were difcult to classify
were labeled as cases or controls. The web application (as well as
Fig. 4) shows that the UPSIT score, in general, was the strongest
factor in deciding if an individual was classied to be a positive PD
case or healthy control by the model. However, UPSIT can be an
indicator of general neurodegeneration while including the
different types of data, genetic data, in particular, is much more
disease-specic. As an example, a decision plot shows that a
sample that was clinically diagnosed to be a PD case, we see that
most of the features seemed to indicate that the individual was
about to be classied as a PD case by the model, but ultimately an

Table 4. Performance metric summaries comparing combined tuned and untuned model performance on PDBP validation dataset.

Data Modality Combined Combined; Untuned Combined; Tuned

Stage Untuned in PPMI as reference Validation in PDBP Validation in PDBP

Algorithm AdaBoostClassier AdaBoostClassier AdaBoostClassier

AUC (%) 89.72 83.84 85.03

Accuracy (%) 85.56 75.81 75.00

Balanced accuracy (%) 82.41 69.31 68.09

Log Loss 0.63 0.64 0.67

Sensitivity 0.89 0.93 0.93

Specicity 0.76 0.46 0.43

PPV 0.91 0.75 0.74

NPV 0.73 0.78 0.78
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unexpectedly high UPSIT score misclassied the individual as a
healthy control (decision plots work to visualize the path a model
takes before arriving at a classication; see Supplementary Fig. 3
for a graphical representation of misclassication). In general,
UPSIT itself accounts for roughly half of the decision-making
process in our model, and in some instances, is a blessing and a
curse with regard to model performance.

Genes and variants affecting the model’s performance shown in
Fig. 4 may have some impact on PD biology. Many of the top
features we nominated that are shown in Fig. 4 are transcriptomic
in nature; this enrichment of transcriptomic data in the top of the
feature importance plots may be due to the PRS accounting for a
substantial part of the strongest purely genetic aspects of PD risk.
With genetics data, it is static and stable, with no change over

Fig. 3 Receiver operating characteristic and case probability density plots in the external dataset (PDBP) at validation for the trained and
then tuned models at default thresholds. Probabilities are predicted case status (r1), so controls (status of 0) skews towards more samples on
the left, and positive PD cases (status of 1) skews more samples on the right. a Testing in PDBP the combined *omics model (genetics p value
threshold= 1E-5, transcriptomics p value threshold= 1E-2, and clinico-demographic information) developed in PPMI prior to tuning the
hyperparameters of the model; b Testing in PDBP the combined *omics model (genetics p value threshold= 1E-5, transcriptomics p value
threshold= 1E-2, and clinico-demographic information) developed in PPMI after tuning the hyperparameters of the model. PPMI Parkinson’s
progression marker initiative, PDBP Parkinson’s disease biomarker program, ROC receiver operating characteristic curve.

Table 5. Optimizing the AUC threshold in withheld training samples and in the validation data.

Dataset PPMI, withheld samples PPMI, withheld samples PDBP, external test samples PDBP, external test samples

Model Training phase Training phase Tuned model Tuned model

Optimization optimized default optimized default

Case Probability Threshold (%) 51 50 51 50

Accuracy (%) 85 85.56 78.58 75

Balanced accuracy (%) 83.95 82.41 77.97 68.09

Log loss 0.05 0.05 0.07 0.09

Sensitivity 0.86 0.89 0.80 0.93

Specicity 0.82 0.76 0.76 0.43

PPV 0.93 0.91 0.85 0.74

NPV 0.69 0.73 0.68 0.78
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time, unlike clinical or transcriptomics data. The contributory
effects of genetics are multiple, weaker, and smaller effects as
opposed to a few large time-varying clinical effects. Additionally,
the genetics data is much more disease-specic than the other
data modalities and performs relatively as expected based on the
previous publications1. The genetics and PRS data included in this
model are based on stronger prior knowledge of PD than the
hypothesis-free RNA sequencing, most likely resulting in some
potential overtting. Some interesting biologically plausible
connections can be drawn from these highly ranked features.
For example, the most impactful feature from the transcriptomics
data, the expression of gene HS3ST3A1, has been implicated in α-
Synuclein aggregation in PD cellular models, as well as having
been recently part of a novel GWAS nding associated with white
matter hyperintensity burden in elderly populations (along with

some aspects of cognitive decline)28,29. Another top-ranking
transcriptomic feature, OTOL1, has been suggested before as a
putative genetic modier of familial PD age at onset30. CHFR has
been associated in previous studies with rotenone-related PD
risk31. CASP7 is potentially biologically interesting due to its
expression being implicated in apoptosis and neuroprotection as
well as rare missense mutations in the gene being associated with
late-onset familial Alzheimer’s32,33. The genetic variant, rs4238361
is a potential PD risk modifying variant whose nearest coding
gene is VPS13C, a gene that harbors both rare and common PD
variants of interest34,35. The gene PHF14 has been suggested to be
downregulated in neurodegenerative diseases; this potential
effect mirrors that suggested in Fig. 436. Recent single-cell
sequencing work has provided evidence for a connection
between SQLE and dopamine stress responses in neurons relating

Fig. 4 Feature importance plots for top 5% of features in data. The plot on the left has lower values indicated by the color blue, while
higher values are indicated in red compared to the baseline risk estimate. Plot on the right indicates directionality, with features predicting for
cases indicated in red, while features better-predicting controls are indicated in blue. SHAP Shapley values, UPSIT University of Pennsylvania
smell identication test, PRS polygenic risk score.
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to PD risk37. Additionally, MMP9 overexpression has been
suggested to be associated with neuronal cell death in
neurodegeneration38. Please see the Supplementary Data for a
detailed discussion of feature selection and its importance.

Another strength of this work is that feature selection from
model building easily segues into network community analyses to
build relatively low bias networks, compared to those with
potential bias taken from literature and text mining39,40. Here we
can push therapeutic and biomarker research by identifying
communities of connected genes in the blood transcriptome of
PD patients. Nodes in these networks suggest shared effects in
genetically targeted drugs, informing development cycles and
benetting developers as drugs connected to genetic or genomic
data often have a higher level of success in trials compared to
those without similar evidence41,42.

Modeling exercises like these not only have the potential to
build useful classiers, they may also identify drug targets. This
can happen at the feature selection, and network build phases. In
our network community built from case-only expression data, only
two quantitative trait loci in blood from Mendelian randomization
in the previously published PD GWAS were included. These two
genes are ZBTB4 and FCF1. Potentially more interesting are the
enriched drug targets within the nominated genes from our
analyses of the transcriptomic data. Given our network commu-
nities are based on genes highly correlated in cases only this is
unsurprising, aimed to build clusters of genes connected by
similar expression patterns among cases. More interestingly are
the ndings from the network communities recognizing the
overrepresentation of genes targeted by known drugs, please see
Supplementary Note 4. For instance, in this study, we uncovered
an interaction between gamma-hydroxybutyric acid and SLC16A7,
SLC16A3, and GABBR1 genes. The SLC16A7 and SLC16A3 genes are
a part of a family of drug transporter genes known as
monocarboxylate transporters43. Drug transporters have a role in
almost every part of the therapeutic process, from absorption,
distribution, and elimination of drug molecules. The GABBR1 gene
encodes a receptor for gamma-aminobutyric acid (GABA)
expressed throughout the brain; defects in this gene underlie
several neurobehavioral diseases43,44. Gamma-hydroxybutyric acid
acts as an agonist, activating GABA-B receptors to exert its
sedative effects. Identication of drug metabolism and receptor
gene/drug interactions may lead to drug discovery, thereby
helping us optimize drug therapy.

Our main weakness in this research is the lack of diversity in
available sample series. Current research suggests that genetic
predictive models have mixed results when being applied across
genetic ancestry groups45. With subsequent iterations of this work
being facilitated by the Global Parkinson’s Genetics Program (GP2)
program over the next 5 years46,47, we hope to expand this
modeling effort into a diverse set of genetic ancestry groups and
generally in larger sample series. We also acknowledge that no
optimal dataset to validate the ndings from PPMI exists because
of the inherent study design of PPMI focusing on unmedicated
recently diagnosed PD cases. Additionally, important known
predictors such as constipation and REM sleep behavior disorder
(RBD) were not included in this analysis. In our previous efforts,
constipation did not pass feature selection (Nalls et al., 2015), and
therefore was not included in this manuscript. While RBD is an
established predictor of PD, one comparable with the smell
identication test, data for RBD was available as part of a
questionnaire for only a subset of samples, and that would have
introduced sparse data, smaller sample sizes, and issues with data
harmonization across the two studies. Previously, the RBD
questionnaire has been shown to be insufcient for screening
idiopathic PD48. Hopefully, the ongoing extension of the PPMI
study will facilitate further work.

Overall, we believe this work represents a signicant conceptual
and scientic advance past previous efforts. This classier has

improved performance, is more broadly applicable, and is highly
reproducible. Further, the transparency of this approach and the
contributions of data types move the eld away from black-box
predictors of disease. A further strength of this work is the use of
open-source automated ML software thoughtfully designed for
scientists focusing on genomic and clinical data, developing
models and validating them on public controlled-access datasets,
visualizing the top contributing features, and providing all the
code and software publicly. For readers not specialized in ML, we
have included sections on model selection and interpretation in
Supplementary Note 3.

This work has helped to push past the previous paradigm of
focusing on a single biomarker or class of biomarker in biomedical
research to maximize data value for clinical and computational
scientists by leveraging ML algorithms that explore complex
relationships between features. We have provided a model(s) to
improve risk prediction in PD to help with interventional and
prospective studies as well as healthcare resource prioritization.
We have also integrated additional analyses and data resources
that may aid in developing and/or rening future interventions.

METHODS
Study participants
This study was done in collaboration with the Accelerating Medicines
Partnership in Parkinson’s disease (AMP PD) initiative as well as the Global
Parkinson’s Genetics Program (GP2) initiative. Data used in the preparation
of this article were obtained from the AMP PD Knowledge Platform. For up-
to-date information on the study, please visit https://www.amp-pd.org. All
subjects provided written informed consent for their participation in the
respective cohorts. Details on how the data from the respective cohorts
were acquired can be found in the Acknowledgements section. The study
design and data-sharing agreement was a collaboration between AMP PD
and NIH and is in accordance with NIH standard ethical approval. All study
participants involved in the AMP PD initiative have provided their informed
consent for their data to be used for studies to their respective cohorts.
Clinical, demographic plus genome-wide DNA and RNA sequencing data

were taken at baseline visits from the Parkinson’s progression marker
initiative (PPMI) and the Parkinson’s disease biomarkers program (PDBP) in
cases with PD and control unaffected by neurologic diseases. We
prioritized keeping features that were available for at least 80% of the
training and validation cohorts available on the AMP PD platform.
Additionally, we prioritized data that met the modeling inclusion criteria
in the previous efforts1 and *omic data that could be passively collected
due to prior precedent and the a priori genomics focus of the report. While
RNA signatures are subject to change depending on disease stage, RNA
sequencing at baseline was chosen for this analysis as it is the closest time
point to diagnosis as possible. PPMI was chosen to be the training cohort
given the recruitment design, recruiting unmedicated individuals within 1
year of diagnosis. Since our model is retrospective, we aimed only to
analyze rened Parkinson’s disease diagnosis, by excluding any samples
with conicting diagnostic data within a decade of post-enrollment follow-
up. We excluded any cases whose medical history included an additional
neurological disease diagnosis or retraction of their PD diagnosis during
follow-up. We also excluded controls developing PD or another
neurodegenerative disease(s) after enrollment. Additionally, a subset of
Parkinson’s disease cases and controls from the PPMI study were excluded
as they came from a targeted study recruitment design purposely
enriching for known genetic risk mutation carriers (LRRK2 and GBA
mutation carrier focused recruitment). Analysis was done on unrelated
individuals of European ancestry. AMP PD sample PRS weights were based
on the most recent European ancestry GWAS data, excluding these
cohorts’ contributions to the allele weightings.
Participants with required clinical, demographic, and genomic (DNA and

RNA sequencing) data were identied for inclusion, with excessive missing
data (>15% per feature) as exclusion criteria. Each contributing study
abided by the ethics guidelines set out by their institutional review boards,
and all participants gave informed consent for inclusion in both their initial
cohorts and subsequent studies.
Clinical and demographic data ascertained as part of this project

included age at diagnosis for cases and age at baseline visit for controls.
Family history (self-reporting if a rst or second-degree relative has a PD
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diagnosis) was also a known clinico-demographic feature of interest.
Ashkenazi Jewish status was inferred using principal component analysis
comparing those samples to a genetic reference series, referencing the
genotyping array data from GSE23636 at Gene Expression Omnibus as
previously described elsewhere49,50. Sex was clinically ascertained but also
conrmed using X chromosome heterozygosity rates. The University of
Pennsylvania smell inventory test (UPSIT) was used in modeling51. For a
summary of basic clinical and demographic features, please refer to Table 1
with additional information on cohort recruitment requirements in the
Supplementary Data.
DNA sequencing data were generated using Illumina’s standard short-

read technology, and the functional equivalence pipeline during alignment
was the Broad Institute’s implementation52. Jointly genotyped sequencing
data using the standard GATK pipeline from AMP PD was used. This
process is described in detail, from sample prep to variant calling, in a
separate manuscript detailing the AMP PD whole-genome DNA sequen-
cing effort [under review]53.
Quality control for these samples based on genetic data output by the

pipeline included the following inclusion criteria: concordance between
genetic and clinically ascertained genders, call rate >95% at both the
sample and variant levels, heterozygosity rate <15%, free mix estimated
contamination rate <3%, transition:transversion ratio >2, unrelated to any
other sample at a level of the rst cousin or closer (identity by descent
<12.5%), and genetically ascertained European ancestry. For inclusion of
whole-genome DNA sequencing data, the variants must have passed basic
quality control as part of the initial sequencing effort (PASS ag from the
joint genotyping pipeline) as well as meeting the following criteria: non-
palindromic alleles, missingness by case-control status P > 1E-4, missing-
ness by haplotype P > 1E-4, Hardy–Weinberg p value >1E-4, minor allele
frequency in cases >5% (in the latest Parkinson’s disease meta-GWAS)17. As
an a priori genetic feature to be included in our modeling efforts, we also
used the basic polygenic risk score from the latest Parkinson’s disease
meta-GWAS (genome-wide signicant loci only) that did not include our
testing or training samples as weights17.
RNA sequencing data from whole blood on the same samples was

generated by the Translational Genomics Research Institute team using
standard protocols for the Illumina NovaSeq technology54. For this study,
we focused on blood withdrawn at baseline. Variance stabilized counts
were adjusted for experimental covariates using standard limma
pipelines55. Gene expression counts for protein-coding genes were
extracted, then differential expression p values were calculated between
cases and controls using logistic regression adjusted for additional
covariates of sex, plate, age, ten principal components, and percentage
usable bases. While there is literature on the effects of non-coding RNA on
PD have been researched elsewhere56, protein-coding genes were chosen
for this analysis. Given the quality of data for known protein-coding genes,
their relevance in drug development and the robust annotations available
we focused on this subset that is more suitable for applications in
downstream analyses such as looking at known drug–gene interactions.

Data preprocessing
As part of the initial data preprocessing, principal components summariz-
ing genetic variation in DNA and RNA sequencing data modalities are
generated separately. For the DNA sequencing, ten principal components
were calculated based on a random set of 10,000 variants sampled after
linkage disequilibrium pruning that kept only variants with r2 < 0.1 with
any other variants in ±1MB. As a note, these variants were not p value
ltered based on recent GWAS, but they do exclude regions containing
large tracts of linkage disequilibrium57. Our genetic data pruning removed
SNPs in long tracts of high LD such as in the HLA region (we excluded any
SNPs within r2 > 0.1 within a sliding window of 1 MB), while retaining
known genetic risk SNPs within the region. For RNA sequencing data, all
protein-coding genes’ read counts per sample were used to generate a
second set of ten principal components. All potential features representing
genetic variants (in the form of minor allele dosages) from sequencing
were then adjusted for the DNA sequence-derived principal components
using linear regression, extracting the residual variation. This adjustment
removes the effects of quantiable European population substructure from
the genetic features prior to training, this is similar in theory to adjusting
analyses for the same principal components in the common variant
regression paradigm employed by GWAS models. The same was done for
RNA sequencing data using RNA sequencing derived principal compo-
nents. This way, we statistically account for latent population substructure
and experimental covariates at the feature level to increase generalizability

across heterogeneous datasets. In its simplest terms, all transcriptomic
data were corrected for possible confounders, and the same is done for
genotype dosages. After adjustment, all continuous features were then
Z-transformed to have a mean of 0 and a standard deviation of 1 to keep
all features on the same numeric scale when possible. Once feature
adjustment and normalization were complete, internal feature selection
was carried out in the PPMI training dataset using decision trees
(extraTrees Classier) to identify features contributing information content
to the model while reducing the potential for overtting prior to model
generation58,59. Overtting here is dened as the over-performance of a
model in the training phase with minimal generalizability in the validation
dataset due to the inclusion of potentially correlated or unimportant
features. The implementation of decision trees for feature selection helps
remove redundant and low-impact features, helping us to generate the
most parsimonious feature set for modeling. Feature selection was run on
combined data modalities to remove potentially redundant feature
contributions that could articially inate model accuracy. Export estimates
for features most likely to contribute to the nal model in order of
importance were generated by the extraTrees classier for each of the
combined models, and are available on the Online Repository. By
removing redundant features, the potential for overtting is limited while
also making the models more conservative. Additionally, if a variant
provided redundant model information, such as being in strong linkage
with a PRS variant, it would be removed from the potential feature list.

Procedures and statistical analysis overview. Figure 1 summarizes the
workow and data used in this project. Our workow began with data
preprocessing of individual-level data at their baseline visit. The focus on
baseline data allows for PDBP to be more similar to PPMI, as PPMI is newly
diagnosed and drug-naive and PDBP also includes some later stage PD.
Data preprocessing, also known as data munging in the machine learning
community, includes feature selection, adjustment, and normalization.
Then we moved on to algorithm competition and feature selection based
on a 70:30 (training:testing) split in the PPMI dataset. Feature selection was
performed using the extremely randomized trees classier algorithm
(extraTrees) on combined data modalities to remove redundant feature
contributions that could overt the model to optimize the information
content from the features and limit articial ination in predictive accuracy
that might be introduced by including such a large number of features
before ltering. In many cases, including more data might not be better for
performance. With this in mind, we attempted to build the most
parsimonious model possible using systematic feature selection criteria60.
Among the top 5% of features ranked in the Shapley analysis, the mean
correlation between features was r2 < 5%, with a maximum of 36%. By
removing redundant features using correlation-based pruning and an
extraTrees classier as a data munging step, the potential for overtting is
limited while also making the models more conservative. We then
compared how each algorithm performed on identical training and testing
data. Once the best performing algorithm had been selected, a thorough
hyperparameter tuning of the algorithm with vefold cross-validation (also
in the entire PPMI cohort) was performed. While Z-transformations were
done on the entire dataset prior to splitting, the results from the cross-
validation were stable over iterations, suggesting minimal bias. Additionally,
the training and validation sets were not transformed together, with PPMI
and PDBP kept separate. The model was exported to enable external
validation and transfer learning in the readers’ own data. This hyperpara-
meter tuning and cross-validation phase was carried out to both improve
performance and reduce bias61. We validated the models built by taking
the trained and tuned models from PPMI and tting them to the external
validation dataset, PDBP. Details on study design, participants, and raw data
processing from PPMI and PDBP can be found in Supplementary Note 2.

Feature and model selection. After the data preprocessing process (quality
control, feature selection, adjustment, and scaling) described above, data
from PPMI was randomly split into 70% training and 30% testing. Training
of the algorithms was performed on the training set, and validation of the
algorithms was performed on the testing set. A total of 12 well-performing
ML algorithms were competed to identify which algorithm could maximize
AUC across the two classes (cases and controls).
These algorithms were chosen due to their success in other domains,

execution in Python’s scikit-learn package, and their ability to export
probability-based predictions, allowing the training, testing, and inter-
pretation of the model more straightforward. The algorithms included are:
logistic regression (LogisticRegression), random forests (RandomForest-
Classier), adaptive boosting (AdaBoostClassier), gradient boosting
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(GradientBoostingClassier), stochastic gradient descent (SGDClassier),
support vector machines (SVC), multi-layer perceptron neural networks
(MLPClassier), k-nearest neighbors (KNeighborsClassier), linear discrimi-
nant analysis (LinearDiscriminantAnalysis), quadratic discriminant analysis
(QuadraticDiscriminantAnalysis), bagging (BaggingClassier), and extreme
gradient boosting (XGBClassier). These algorithms are, broadly, a
departure from standard linear models used in genetic prediction analyses,
employing tree-based methods (boosting), kernel-based methods (k-
nearest neighbors, support vectors, discriminant analysis, and random
forests, as well as deep learning (perceptron and gradient descent). Linear
models are traditionally used in the biological space because of their
power and ease of interpretation. They excel at correlative modeling, and
information such as co-occurrence probabilities can inform the model.
When more exibility is needed, however, such as when the order of
events matters and a better t to the data can be found, nonlinear
machine learning models are preferred.
Feature selection was carried out using the extremely randomized trees

classier algorithm (extraTrees)62 to remove potentially redundant feature
contributions that could overt the model. An in-depth comparison of the
top features identied by Shapley values and were ultimately selected by
the best performing model can be found in Supplementary Data Fig. 4.
The algorithm with the highest AUC and balanced accuracy in the

withheld 30% of PPMI was selected for tuning and cross-validation. The
top competing algorithm was then selected to undergo a computationally
intensive hyperparameter tuning phase in the entire PPMI dataset, no
longer split into training and testing once, instead of undergoing cross-
validation each time parameters were iterated. In this analysis, the top-
performing algorithm (AdaBoostClassier) was tuned for several potential
predictors (estimators) between 1 and 1000 for 25 random iterations at
vefold cross-validation per iteration.
This process detailed in the paragraphs above was carried out 49 times, at

varying thresholds of p values based on feature inclusion thresholds. We
iterated across all possible combinations of p value thresholds [1E-2, 1E-3, 1E-
4, 1E-5, 1E-6, 1E-7, and 1E-8] for genetic data from the most recent published
GWAS and for transcriptomic data from our differential expression work also
described above17. Genetic and transcriptomic data are structurally different
and analyzed using different methods, and genetic data is wider than
transcriptomic data. Given the differences in modalities, each modality went
through separate feature selection phases. Each of these combinations were
then used as inputs, and during the munging stage underwent feature
selection using the extraTrees classier. During training, at each of the 49
combinations of thresholds, the best model determined by maximizing the
AUC metric was chosen. The nal best performing model was chosen based
not only on maximizing AUC, but by using a combination of the best-
balanced accuracy, sensitivity, and specicity metrics reported to best
account for case-control imbalance. Further details on ML metrics and
interpretation can be found in Supplementary Note 3. We ltered using the p
values identied in the largest meta-analysis of 17 datasets from PD GWAS
available from European ancestry samples17 prior to training the data. The
PPMI training set is only a minuscule portion of the most recent GWAS study
(less than 0.1% of the sample size); additionally, the algorithmic feature
selection described above is generally much more conservative and excluded
the majority of features reaching the p value thresholds of interest thus
reducing any impact caused by potential data leakage. In this report, we only
focused on a model with a 1E-5 maximum p value for genetic data inclusion
and a 1E-2 maximum P for transcriptomic data inclusion; however, all
potential models were exported and saved for public use in transfer learning
for similar datasets for the scientic community (Online Repository).

Post hoc optimization for class imbalance. After training, we ret the
model to the withheld samples using an optimized threshold for case
probability based on Youden’s J calculation to better account for case-
control imbalance and subsequently increase balanced accuracy and
related metrics63. This post hoc optimization was done again after tting
the tuned model to the external validation cohort. Here we generate the
probabilities for being a case in the PDBP validation cohort using the same
model with the same features and parameters as in the training and tuning
in PPMI, except here the probability threshold for discerning case status is
specic to PDBP allowing us to better address imbalance specic to PDBP.
This is a post hoc probabilistic optimization that does not include any
reweighting or triaging of features in either dataset, allowing for a stand-
alone validation phase. We have constructed a web app to allow the user
to evaluate the contribution of different features at validation to an
individual sample’s classication [https://share.streamlit.io/anant-dadu/

shapleypdpredictiongenetics/main], showing the interplay between clin-
ical and omic data on a more granular level.

Feature importance and interpretation. The Shapley additive explanations
(SHAP) approach was used to evaluate each feature’s inuence in the ML
model. Shapley values are a game theory-based approximation of a feature’s
impact on a model relative bidirectional change in that feature as relative to
all other features in the model. Shapley explanations enhance understanding
by creating accurate explanations for each observation in a dataset. The
SHAP package was used to calculate and visualize these Shapley values seen
in the gures in the manuscript and the interactive website64,65. A surrogate
xgboost model was trained in 70% of the data and later tested in the 30% of
withheld data to evaluate the model’s contributing features. The interactive
website (https://share.streamlit.io/anant-dadu/shapleypdpredictiongenetics/
main) was developed as an open-access and cloud-based platform for
researchers to investigate the top features of the model developed in this
study and how these may inuence the classication (or in some cases,
misclassication) of a particular sample. In its simplest description, the
Shapley values are similar to standard regression derived relative importance
measures with regard to interpretation.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
AMP PD data and quality control notebooks are access-controlled [https://amp-pd.
org/], and require individual sign-up to access the data. Additionally, we have
developed an interactive website [https://share.streamlit.io/anant-dadu/
shapleypdpredictiongenetics/main] where researchers can investigate components
of the predictive model and can investigate feature effects on a sample and
cohort level.

CODE AVAILABILITY
GenoML is an open-source Python package automating machine learning workows
for genomics14. Source code and documentation is available at [https://genoml.com/]
and on GitHub [https://github.com/GenoML/genoml2]. All code, gures, models, and
supplements for this study have been made available on GitHub [https://github.com/
GenoML/GenoML_multimodal_PD/].
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